Binary Linear Codes and Symmetric Generation of Finite Simple Groups

نویسنده

  • Mohamed Sayed
چکیده

In this paper, we study a new combinatorial method to construct decodable binary linear codes for which the automorphism groups are generated by sets of involutory symmetric generators. In this method codewords as elements of a group are represented as permutations in Sn followed by words in the n involutory symmetric generators. Transformation between elements written in symmetric representations and permutations in list forms, with the well-known Hamming distance, is given. Although it is feasible to handle permutations of reasonably large sizes and perform composition operations, transmitting and recording such elements is inconvenient. Symmetric representations of the elements of a code automorphism group have an advantage over permutation representations in terms of conciseness as well as ease of conducting operations. Mathematics Subject Classification: 20B20, 94B05, 94B25 Keyword: Coding theory, errors detecting-correcting, permutation groups, symmetric generation of groups

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Error Floors for Non-binary LDPC Codes over General Linear Group through q-Ary Memoryless Symmetric Channels

In this paper, we compare the decoding error rates in the error floors for non-binary low-density parity-check (LDPC) codes over general linear groups with those for non-binary LDPC codes over finite fields transmitted through the q-ary memoryless symmetric channels under belief propagation decoding. To analyze non-binary LDPC codes defined over both the general linear group GL(m, F2) and the f...

متن کامل

Ultrasonic guided waves reflection from simple dent in pipe for defect rate estimation and parameters determination of axisymmetric wave generation source

In this paper, the reflection of ultrasonic guided waves from simple dent in pipes has been investigated using finite element method and the relationship between reflection coefficient of these waves and deformation rate has been determined. Also, the effect of the parameters of wave generation source on the generated wave field has been investigated using normal modes expansion method. At firs...

متن کامل

Linear codes with complementary duals related to the complement of the Higman-Sims graph

‎In this paper we study codes $C_p(overline{{rm HiS}})$ where $p =3,7‎, ‎11$ defined by the 3‎- ‎7‎- ‎and 11-modular representations of the simple sporadic group ${rm HS}$ of Higman and Sims of degree 100‎. ‎With exception of $p=11$ the codes are those defined by the row span of the adjacency matrix of the complement of the Higman-Sims graph over $GF(3)$ and $GF(7).$ We show that these codes ha...

متن کامل

Cubic symmetric graphs of orders $36p$ and $36p^{2}$

A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

متن کامل

Code generator matrices as RNG conditioners

We quantify precisely the distribution of the output of a binary random number generator (RNG) after conditioning with a binary linear code generator matrix by showing the connection between the Walsh spectrum of the resulting random variable and the weight distribution of the code. Previously known bounds on the performance of linear binary codes as entropy extractors can be derived by conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016